LESSON PLAN OF 3RD SEMESTER(2024-25) CIVIL ENGINEERING

Discipline:-	Semester:-3 RD	Name of the Teaching Faculty
CIVIL ENGG.		PRIYABRATA TRIPATHY(Lecturer)
Subject:-	No of Days/per	Semester From:- 01/07/2024 To:- 08/11/2024
STRUCTURAL MECHANICS	Week Class	
(Th.1)	Allotted :-04	No of Weeks:- 15
Week	Class Day	
Week		Theory/ Practical Topics
	1 st	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram
	2 nd	1.2 Review of CG and MI of different sections
		2.1 Simple Stresses and Strains
1 st	3 rd	Introduction to stresses and strains: Mechanical properties of materials –
; 		Rigidity, Elasticity, Plasticity,
	4 th	Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility,
		Malleability, Creep, Fatigue, Tenacity, Durability
	1 st	Types of stresses -Tensile, Compressive and Shear stresses, Types of strains -
		Tensile, Compressive and Shear strains, Complimentary shear stress -
		Diagonal tensile / compressive Stresses due to shear, Elongation and
		Contraction, Longitudinal and Lateral strains
	2 nd	Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's
		ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants,
		Derivation of relationship between the elastic constants
2 nd	3 rd	2.2 Application of simple stress and strain in engineering field:
		Behaviour of ductile and brittle materials under direct loads, Stress Strain
		curve of a ductile material, Limit of proportionality
	4 th	Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage
		elongation, Percentage reduction in area, Significance of percentage
		elongation and reduction in area of cross section, Deformation of prismatic
		bars due to uniaxial load, Deformation of prismatic bars due to its self
	-	weight
3 rd	1 st	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses,
		Concept of Principal stress and Principal Planes, major and minor principal
		stresses and their orientations, Mohr's Circle and its application to solve
		problems of complex stresses
	2 nd	Stresses In Beams and Shafts
		3.1 Stresses in beams due to bending: Bending stress in beams – Theory of
		simple bending – Assumptions – Moment of resistance – Equation for
		Flexure – Flexural stress distribution – Curvature of beam – Position of N.A.
		and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	3 rd	3.2 Shear stresses in beams: Shear stress distribution in beams of
1		rectangular, circular and standard sections symmetrical about vertical axis.
1	4 th	3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions
		of pure torsion, torsion of solid and hollow circular sections, polar moment
* -a- voi		of inertia, torsional shearing stresses,

	1 st	angle of twist, torsional rigidity, equation of torsion
4 th	2 nd	3.4 Combined bending and direct stresses: Combination of stresses Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension,
	3 rd	Limit of eccentricity, Middle third/fourth rule, Core or Kern for square rectangular and circular sections, chimneys, dams and retaining walls
	4 th	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column,
5 th	1 st	Euler's theory of long columns, Critical load for Columns with different end conditions
	2 nd	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support
	3 rd	Problem practice
	4 th	Problem practice
6 th	1 st	5.1 Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction,
	2 nd	Problem practice
	3 rd	5.1 Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium
	4 th	Problem practice
7 th	1 st	5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M,
	2 nd	5.2 S.F and B.M of general cases of determinate beams with concentrated loads and udl only,
	3 rd	Problem practice
	4 th	Problem practice
	1 st	5.2 S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.
8 th	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
9 th	1 st	Slope and Deflection6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection
	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
10 th	1 st	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method Macaulay's method).
	2 nd	Problem practice
	3 rd	Problem practice
	4 th	Problem practice
11 th	1 st	Indeterminate Beams 7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever

	2 nd	fixed and two span continuous beams by principle of superposition, SF and
		BM diagrams (point load and udl covering full span)
	3 rd	Problem practice
	4 th	Problem practice
	1 st	Trusses 8.1 Introduction: Types of trusses, statically determinate and
		indeterminate trusses
12 th	2 nd	Problem Practice
	3 rd	Problem Practice
	4 th	Problem Practice
	1 st	8.1 degree of indeterminacy.
a a th	2 nd	Problem Practice
13 th	3 rd	Problem Practice
	4 th	Problem Practice
	1 st	stable and unstable trusses, advantages of trusses
14 th	2 nd	Problem Practice
	3 rd	Problem Practice
	4 th	Problem Practice
	1 st	Analysis of Trusses
		8.2 Analytical method (method of joint, method of section)
15 th	2 nd	8.2 Analytical method (method of joint, method of section)
	3 rd	PREVIOUS YEAR QUESTION DISCUSSION
	4 th	REVISION

Lecturer

Principal 29/6/24 G.I.E.T (Poly)

Principal
GIET (Polytechnic
Jagatpur, Crittae)

Sr.Lecturer
Sr. Lecturer
Civil Engg. Dept.
G.I.E.T(Poly), Jagatpur, Ctc